Jupyter Notebook Binder

Project flow#

LaminDB allows tracking data lineage on the entire project level.

Here, we walk through exemplified app uploads, pipelines & notebooks following Schmidt et al., 2022.

A CRISPR screen reading out a phenotypic endpoint on T cells is paired with scRNA-seq to generate insights into IFN-Ξ³ production.

These insights get linked back to the original data through the steps taken in the project to provide context for interpretation & future decision making.

More specifically: Why should I care about data flow?

Data flow tracks data sources & transformations to trace biological insights, verify experimental outcomes, meet regulatory standards, increase the robustness of research and optimize the feedback loop of team-wide learning iterations.

While tracking data flow is easier when it’s governed by deterministic pipelines, it becomes hard when it’s governed by interactive human-driven analyses.

LaminDB interfaces workflow mangers for the former and embraces the latter.

Setup#

Init a test instance:

!lamin init --storage ./mydata
Hide code cell output
πŸ’‘ connected lamindb: testuser1/mydata

Import lamindb:

import lamindb as ln
from IPython.display import Image, display
πŸ’‘ connected lamindb: testuser1/mydata

Steps#

In the following, we walk through exemplified steps covering different types of transforms (Transform).

Note

The full notebooks are in this repository.

App upload of phenotypic data #

Register data through app upload from wetlab by testuser1:

# This function mimics the upload of artifacts via the UI
# In reality, you simply drag and drop files into the UI
def mock_upload_crispra_result_app():
    ln.setup.login("testuser1")
    transform = ln.Transform(name="Upload GWS CRISPRa result", type="upload")
    ln.track(transform=transform)
    output_path = ln.core.datasets.schmidt22_crispra_gws_IFNG(ln.settings.storage)
    output_file = ln.Artifact(
        output_path, description="Raw data of schmidt22 crispra GWS"
    )
    output_file.save()

mock_upload_crispra_result_app()
Hide code cell output
πŸ’‘ saved: Transform(uid='nKsCPZd6344wnShB', name='Upload GWS CRISPRa result', type='upload', updated_at=2024-04-23 07:51:05 UTC, created_by_id=1)
πŸ’‘ saved: Run(uid='kJJ1nEhklCmtsP9njMnT', transform_id=1, created_by_id=1)

Hit identification in notebook #

Access, transform & register data in drylab by testuser2 in notebook hit-identification.

Hide code cell content
# the following mimics the integrated analysis notebook
# In reality, you would execute inside the notebook
import nbproject_test
from pathlib import Path

cwd = Path.cwd()
nbproject_test.execute_notebooks(cwd / "project-flow-scripts/hit-identification.ipynb", write=True)
Executing notebooks in /home/runner/work/lamin-usecases/lamin-usecases/docs/project-flow-scripts/hit-identification.ipynb
Scheduled: ['hit-identification']
hit-identification 
βœ“ (5.220s)
Total time: 5.222s

Inspect data flow:

artifact = ln.Artifact.filter(description="hits from schmidt22 crispra GWS").one()
artifact.view_lineage()
_images/67ac61da111f0c217f062b5cb7d1150cf0b751b60414ac4bdfe78b6359319175.svg

Sequencer upload #

Upload files from sequencer via script chromium_10x_upload.py:

!python project-flow-scripts/chromium_10x_upload.py
Hide code cell output
πŸ’‘ connected lamindb: testuser1/mydata
πŸ’‘ saved: Transform(uid='qCJPkOuZAi9q5zKv', name='chromium_10x_upload.py', key='chromium_10x_upload.py', version='1', type='script', updated_at=2024-04-23 07:51:13 UTC, created_by_id=1)
πŸ’‘ saved: Run(uid='T8JU6o0svkeNyNrjNngG', transform_id=3, created_by_id=1)
βœ… saved transform.source_code: Artifact(uid='BqrTi5dqvnmU6Mi0bKRV', suffix='.py', description='Source of transform qCJPkOuZAi9q5zKv', version='1', size=474, hash='o-QoKgEZGxbk5oBtcAKoWw', hash_type='md5', visibility=0, key_is_virtual=True, updated_at=2024-04-23 07:51:13 UTC, storage_id=1, created_by_id=1)
βœ… saved run.environment: Artifact(uid='HgHBgijkz60IgpIjBBU0', suffix='.txt', description='requirements.txt', size=3400, hash='4O7WcCvkKPl8VO8u0UPcJg', hash_type='md5', visibility=0, key_is_virtual=True, updated_at=2024-04-23 07:51:13 UTC, storage_id=1, created_by_id=1)

scRNA-seq bioinformatics pipeline #

Process uploaded files using a script or workflow manager: Pipelines and obtain 3 output files in a directory filtered_feature_bc_matrix/:

cellranger.py

!python project-flow-scripts/cellranger.py
Hide code cell output
πŸ’‘ connected lamindb: testuser1/mydata
πŸ’‘ saved: Transform(uid='vHF744EbM216ZypN', name='Cell Ranger', version='7.2.0', type='pipeline', reference='https://www.10xgenomics.com/support/software/cell-ranger/7.2', updated_at=2024-04-23 07:51:16 UTC, created_by_id=2)
πŸ’‘ saved: Run(uid='ZIEiONwAOiZWvTEeaupW', transform_id=4, created_by_id=2)
❗ this creates one artifact per file in the directory - you might simply call ln.Artifact(dir) to get one artifact for the entire directory

postprocess_cellranger.py

!python project-flow-scripts/postprocess_cellranger.py
Hide code cell output
πŸ’‘ connected lamindb: testuser1/mydata
πŸ’‘ saved: Transform(uid='YqmbO6oMXjRj65cN', name='postprocess_cellranger.py', key='postprocess_cellranger.py', version='2', type='script', updated_at=2024-04-23 07:51:18 UTC, created_by_id=2)
πŸ’‘ saved: Run(uid='hsvn8aqHXo0IvtuHeCoB', transform_id=5, created_by_id=2)
βœ… saved transform.source_code: Artifact(uid='68wBGIHUnubgegdYSS8v', suffix='.py', description='Source of transform YqmbO6oMXjRj65cN', version='2', size=495, hash='iLSbWXZ-j7pkIgzO0i6c0w', hash_type='md5', visibility=0, key_is_virtual=True, updated_at=2024-04-23 07:51:18 UTC, storage_id=1, created_by_id=2)
❗ returning existing artifact with same hash: Artifact(uid='HgHBgijkz60IgpIjBBU0', suffix='.txt', description='requirements.txt', size=3400, hash='4O7WcCvkKPl8VO8u0UPcJg', hash_type='md5', visibility=0, key_is_virtual=True, updated_at=2024-04-23 07:51:13 UTC, storage_id=1, created_by_id=1)
βœ… saved run.environment: Artifact(uid='HgHBgijkz60IgpIjBBU0', suffix='.txt', description='requirements.txt', size=3400, hash='4O7WcCvkKPl8VO8u0UPcJg', hash_type='md5', visibility=0, key_is_virtual=True, updated_at=2024-04-23 07:51:13 UTC, storage_id=1, created_by_id=1)

Inspect data flow:

output_file = ln.Artifact.filter(description="perturbseq counts").one()
output_file.view_lineage()
_images/a06e9da5a40cc05c99eebe6088089647047cd813203c7567ea56350dc30ac7fd.svg

Integrate scRNA-seq & phenotypic data #

Integrate data in notebook integrated-analysis.

Hide code cell content
# the following mimics the integrated analysis notebook
# In reality, you would execute inside the notebook
nbproject_test.execute_notebooks(cwd / "project-flow-scripts/integrated-analysis.ipynb", write=True)
Executing notebooks in /home/runner/work/lamin-usecases/lamin-usecases/docs/project-flow-scripts/integrated-analysis.ipynb
Scheduled: ['integrated-analysis']
integrated-analysis 
βœ“ (5.414s)
Total time: 5.415s

Review results#

Let’s load one of the plots:

# track the current notebook as transform
ln.settings.transform.stem_uid = "1LCd8kco9lZU"
ln.settings.transform.version = "0"
ln.track()
πŸ’‘ notebook imports: ipython==8.23.0 lamindb==0.70.3 nbproject_test==0.5.1
πŸ’‘ saved: Transform(uid='1LCd8kco9lZU6K79', name='Project flow', key='project-flow', version='0', type='notebook', updated_at=2024-04-23 07:51:25 UTC, created_by_id=1)
πŸ’‘ saved: Run(uid='YIM5yDzEAv0aibixKc7Z', transform_id=7, created_by_id=1)
artifact = ln.Artifact.filter(key__contains="figures/matrixplot").one()
artifact.cache()
Hide code cell output
PosixUPath('/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/.lamindb/RrmHrm5X1U6IEuCd5r84.png')
display(Image(filename=artifact.path))
_images/441ad205ac0103f4b082eb21b8abb0d8df6460d4baa3bb09f60581a127bdf496.png

We see that the image artifact is tracked as an input of the current notebook. The input is highlighted, the notebook follows at the bottom:

artifact.view_lineage()
_images/dcd18c8386fa8e179340a22efa9a5baf3bc384852fe03015710f6232e0d6915e.svg

Alternatively, we can also look at the sequence of transforms:

transform = ln.Transform.search("Project flow", return_queryset=True).first()
transform.parents.df()
uid name key version description type latest_report_id source_code_id reference reference_type created_at updated_at created_by_id
id
6 lB3IyPLQSmvt5zKv Perform single cell analysis, integrate with C... integrated-analysis 1 None notebook None None None None 2024-04-23 07:51:23.736526+00:00 2024-04-23 07:51:23.736553+00:00 2
transform.view_parents()
_images/7f08476829f7fab77311ca2a4d50c8141367db89b8419354228aa14695d92889.svg

Understand runs#

We tracked pipeline and notebook runs through run_context, which stores a Transform and a Run record as a global context.

Artifact objects are the inputs and outputs of runs.

What if I don’t want a global context?

Sometimes, we don’t want to create a global run context but manually pass a run when creating an artifact:

run = ln.Run(transform=transform)
ln.Artifact(filepath, run=run)
When does an artifact appear as a run input?

When accessing an artifact via cache(), load() or backed(), two things happen:

  1. The current run gets added to artifact.input_of

  2. The transform of that artifact gets added as a parent of the current transform

You can then switch off auto-tracking of run inputs if you set ln.settings.track_run_inputs = False: Can I disable tracking run inputs?

You can also track run inputs on a case by case basis via is_run_input=True, e.g., here:

artifact.load(is_run_input=True)

Query by provenance#

We can query or search for the notebook that created the artifact:

transform = ln.Transform.search("GWS CRIPSRa analysis", return_queryset=True).first()

And then find all the artifacts created by that notebook:

ln.Artifact.filter(transform=transform).df()
uid storage_id key suffix accessor description version size hash hash_type n_objects n_observations transform_id run_id visibility key_is_virtual created_at updated_at created_by_id
id
2 TdtR4mZcPpWS8TcOZXRX 1 None .parquet DataFrame hits from schmidt22 crispra GWS None 18368 PihzyuN-FWc-ld6ioxAuPg md5 None None 2 2 1 True 2024-04-23 07:51:11.051273+00:00 2024-04-23 07:51:11.051302+00:00 1

Which transform ingested a given artifact?

artifact = ln.Artifact.filter().first()
artifact.transform
Transform(uid='nKsCPZd6344wnShB', name='Upload GWS CRISPRa result', type='upload', updated_at=2024-04-23 07:51:05 UTC, created_by_id=1)

And which user?

artifact.created_by
User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2024-04-23 07:51:13 UTC)

Which transforms were created by a given user?

users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser1).df()
uid name key version description type latest_report_id source_code_id reference reference_type created_at updated_at created_by_id
id
1 nKsCPZd6344wnShB Upload GWS CRISPRa result None None None upload None NaN None None 2024-04-23 07:51:05.455779+00:00 2024-04-23 07:51:05.455800+00:00 1
2 T0T28btuB0PG5zKv GWS CRIPSRa analysis hit-identification 1 None notebook None NaN None None 2024-04-23 07:51:10.528832+00:00 2024-04-23 07:51:10.528868+00:00 1
3 qCJPkOuZAi9q5zKv chromium_10x_upload.py chromium_10x_upload.py 1 None script None 3.0 None None 2024-04-23 07:51:13.489088+00:00 2024-04-23 07:51:13.975381+00:00 1
7 1LCd8kco9lZU6K79 Project flow project-flow 0 None notebook None NaN None None 2024-04-23 07:51:25.592762+00:00 2024-04-23 07:51:25.592804+00:00 1

Which notebooks were created by a given user?

ln.Transform.filter(created_by=users.testuser1, type="notebook").df()
uid name key version description type latest_report_id source_code_id reference reference_type created_at updated_at created_by_id
id
2 T0T28btuB0PG5zKv GWS CRIPSRa analysis hit-identification 1 None notebook None None None None 2024-04-23 07:51:10.528832+00:00 2024-04-23 07:51:10.528868+00:00 1
7 1LCd8kco9lZU6K79 Project flow project-flow 0 None notebook None None None None 2024-04-23 07:51:25.592762+00:00 2024-04-23 07:51:25.592804+00:00 1

We can also view all recent additions to the entire database:

ln.view()
Hide code cell output
Artifact
uid storage_id key suffix accessor description version size hash hash_type n_objects n_observations transform_id run_id visibility key_is_virtual created_at updated_at created_by_id
id
13 RrmHrm5X1U6IEuCd5r84 1 figures/matrixplot_fig2_score-wgs-hits-per-clu... .png None None None 28814 8zXF_cVwaZnfhmrLbt_0kA md5 None None 6 6 1 True 2024-04-23 07:51:24.712792+00:00 2024-04-23 07:51:24.712818+00:00 2
12 ERTRREMtQLh0DbFi8v0l 1 figures/umap_fig1_score-wgs-hits.png .png None None None 118999 DCFDLUMF-UohaBvkThn0mA md5 None None 6 6 1 True 2024-04-23 07:51:24.505095+00:00 2024-04-23 07:51:24.505121+00:00 2
11 L2gKWssohe1FcbOLrhix 1 schmidt22_perturbseq.h5ad .h5ad AnnData perturbseq counts None 20659936 la7EvqEUMDlug9-rpw-udA md5 None None 5 5 1 False 2024-04-23 07:51:19.503452+00:00 2024-04-23 07:51:19.503483+00:00 2
9 TMKns8jCdeVTiSpHxiZl 1 perturbseq/filtered_feature_bc_matrix/matrix.m... .mtx.gz None None None 6 96VQiFQ6djI1PyKyq-htYQ md5 None None 4 4 1 False 2024-04-23 07:51:16.572457+00:00 2024-04-23 07:51:16.572475+00:00 2
8 kwTlRw2eoFTDf1WQqq7a 1 perturbseq/filtered_feature_bc_matrix/features... .tsv.gz None None None 6 xt6PIoCbBtKhpltieweqhw md5 None None 4 4 1 False 2024-04-23 07:51:16.571851+00:00 2024-04-23 07:51:16.571869+00:00 2
7 F7dbXVtOJwqyxzWoGnpE 1 perturbseq/filtered_feature_bc_matrix/barcodes... .tsv.gz None None None 6 eZHm5As7_jJMjzCvF6BQGw md5 None None 4 4 1 False 2024-04-23 07:51:16.571041+00:00 2024-04-23 07:51:16.571066+00:00 2
6 Uap4KlVmfj2VPj4h3FgY 1 fastq/perturbseq_R2_001.fastq.gz .fastq.gz None None None 6 _RnTaD4zUdsNrf7nHsykLA md5 None None 3 3 1 False 2024-04-23 07:51:13.985845+00:00 2024-04-23 07:51:13.985871+00:00 1
Run
uid transform_id started_at finished_at created_by_id json report_id environment_id is_consecutive reference reference_type created_at
id
1 kJJ1nEhklCmtsP9njMnT 1 2024-04-23 07:51:05.460661+00:00 NaT 1 None None NaN True None None 2024-04-23 07:51:05.460832+00:00
2 JwRHhE9CQmWEB9jw9wRa 2 2024-04-23 07:51:10.535536+00:00 NaT 1 None None NaN True None None 2024-04-23 07:51:10.535636+00:00
3 T8JU6o0svkeNyNrjNngG 3 2024-04-23 07:51:13.492256+00:00 2024-04-23 07:51:13.989177+00:00 1 None None 4.0 None None None 2024-04-23 07:51:13.492350+00:00
4 ZIEiONwAOiZWvTEeaupW 4 2024-04-23 07:51:16.098090+00:00 NaT 2 None None NaN None None None 2024-04-23 07:51:16.098182+00:00
5 hsvn8aqHXo0IvtuHeCoB 5 2024-04-23 07:51:18.234655+00:00 NaT 2 None None 4.0 None None None 2024-04-23 07:51:18.234788+00:00
6 mD7wuHBWxVA6pXzu3AfK 6 2024-04-23 07:51:23.743375+00:00 NaT 2 None None NaN True None None 2024-04-23 07:51:23.743473+00:00
7 YIM5yDzEAv0aibixKc7Z 7 2024-04-23 07:51:25.598745+00:00 NaT 1 None None NaN True None None 2024-04-23 07:51:25.598842+00:00
Storage
uid root description type region created_at updated_at created_by_id
id
1 fpiIXBge /home/runner/work/lamin-usecases/lamin-usecase... None local None 2024-04-23 07:51:03.566346+00:00 2024-04-23 07:51:03.566368+00:00 1
Transform
uid name key version description type latest_report_id source_code_id reference reference_type created_at updated_at created_by_id
id
7 1LCd8kco9lZU6K79 Project flow project-flow 0 None notebook None NaN None None 2024-04-23 07:51:25.592762+00:00 2024-04-23 07:51:25.592804+00:00 1
6 lB3IyPLQSmvt5zKv Perform single cell analysis, integrate with C... integrated-analysis 1 None notebook None NaN None None 2024-04-23 07:51:23.736526+00:00 2024-04-23 07:51:23.736553+00:00 2
5 YqmbO6oMXjRj65cN postprocess_cellranger.py postprocess_cellranger.py 2 None script None 10.0 None None 2024-04-23 07:51:18.231926+00:00 2024-04-23 07:51:18.707719+00:00 2
4 vHF744EbM216ZypN Cell Ranger None 7.2.0 None pipeline None NaN https://www.10xgenomics.com/support/software/c... None 2024-04-23 07:51:16.095942+00:00 2024-04-23 07:51:16.095963+00:00 2
3 qCJPkOuZAi9q5zKv chromium_10x_upload.py chromium_10x_upload.py 1 None script None 3.0 None None 2024-04-23 07:51:13.489088+00:00 2024-04-23 07:51:13.975381+00:00 1
2 T0T28btuB0PG5zKv GWS CRIPSRa analysis hit-identification 1 None notebook None NaN None None 2024-04-23 07:51:10.528832+00:00 2024-04-23 07:51:10.528868+00:00 1
1 nKsCPZd6344wnShB Upload GWS CRISPRa result None None None upload None NaN None None 2024-04-23 07:51:05.455779+00:00 2024-04-23 07:51:05.455800+00:00 1
User
uid handle name created_at updated_at
id
2 bKeW4T6E testuser2 Test User2 2024-04-23 07:51:16.085894+00:00 2024-04-23 07:51:16.085928+00:00
1 DzTjkKse testuser1 Test User1 2024-04-23 07:51:03.562574+00:00 2024-04-23 07:51:13.354694+00:00
Hide code cell content
!lamin login testuser1
!lamin delete --force mydata
!rm -r ./mydata
βœ… logged in with email testuser1@lamin.ai (uid: DzTjkKse)
πŸ’‘ deleting instance testuser1/mydata
❗ manually delete your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/mydata